HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration.

نویسندگان

  • Yongcheol Cho
  • Valeria Cavalli
چکیده

Axon regeneration is an essential process to rebuild functional connections between injured neurons and their targets. Regenerative axonal growth requires alterations in axonal microtubule dynamics, but the signalling mechanisms involved remain incompletely understood. Our results reveal that axon injury induces a gradient of tubulin deacetylation, which is required for axon regeneration both in vitro and in vivo. This injury-induced tubulin deacetylation is specific to peripheral neurons and fails to occur in central neurons. We found that tubulin deacetylation is initiated by calcium influx at the site of injury, and requires protein kinase C-mediated activation of the histone deacetylase 5 (HDAC5). Our findings identify HDAC5 as a novel injury-regulated tubulin deacetylase that plays an essential role in growth cone dynamics and axon regeneration. In addition, our results suggest a mechanism for the spatial control of tubulin modifications that is required for axon regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of αTAT1 and HDAC5 on axonal regeneration in adult neurons

The role of posttranslational modifications in axonal injury and regeneration has been widely studied but there has been little consensus over the mechanism by which each modification affects adult axonal growth. Acetylation is known to play an important role in a variety of neuronal functions and its homeostasis is controlled by two enzyme families: the Histone Deacetylases (HDACs) and Histone...

متن کامل

Injury-Induced HDAC5 Nuclear Export Is Essential for Axon Regeneration

Reactivation of a silent transcriptional program is a critical step in successful axon regeneration following injury. Yet how such a program is unlocked after injury remains largely unexplored. We found that axon injury in peripheral sensory neurons elicits a back-propagating calcium wave that invades the soma and causes nuclear export of HDAC5 in a PKCμ-dependent manner. Injury-induced HDAC5 n...

متن کامل

MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration.

Regulated gene expression determines the intrinsic ability of neurons to extend axons, and loss of such ability is the major reason for the failed axon regeneration in the mature mammalian CNS. MicroRNAs and histone modifications are key epigenetic regulators of gene expression, but their roles in mammalian axon regeneration are not well explored. Here we report microRNA-138 (miR-138) as a nove...

متن کامل

α-Tubulin Acetyltransferase Is a Novel Target Mediating Neurite Growth Inhibitory Effects of Chondroitin Sulfate Proteoglycans and Myelin-Associated Glycoprotein

Damage to the CNS results in neuronal and axonal degeneration, and subsequent neurological dysfunction. Endogenous repair in the CNS is impeded by inhibitory chemical and physical barriers, such as chondroitin sulfate proteoglycans (CSPGs) and myelin-associated glycoprotein (MAG), which prevent axon regeneration. Previously, it has been demonstrated that the inhibition of axonal histone deacety...

متن کامل

AMP-activated protein kinase mediates myogenin expression and myogenesis via histone deacetylase 5.

There is a global epidemic of obesity, and obesity is known to inhibit AMP-activated protein kinase (AMPK) activity and impairs myogenesis. Myogenin mediates the fusion of myoblasts into myotubes, a critical step in myogenesis. We observed that inhibition of AMPKα1 downregulates myogenin expression and myogenesis, but the underlying mechanisms are unclear. We postulated that AMPK regulates myog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 31 14  شماره 

صفحات  -

تاریخ انتشار 2012